
A Manifold Learning Data Enrichment
Methodology for Homicide Prediction

Juan S. Moreno Pabón∗ Mateo Dulce Rubio∗ Yor Castaño∗ Alvaro J. Riascos∗† Paula Rodríguez Díaz∗

∗Quantil
†Universidad de los Andes

October 2020

Abstract—Not all types of crime have the same priority in the
agendas of policymakers since society tends to be more reluctant
to more violent and costly crimes such as homicide. However,
relative to other types of crime, homicides are statistically more
challenging due to its sparsity and low frequency. For instance,
over the last five years the average number of homicides across
the city of Bogota has been roughly a thousand events per year,
compared to the more than one hundred thousand robberies
reported in the same period. Nevertheless, more than 80% of the
homicides in the city occur during street fights suggesting a strong
spatial and temporal correlation between these two types of crime.
With this in mind, we used a manifold learning approach that
capitalizes on a rich dataset of street fights to discover a criminal
manifold that we use to penalize a KDE model of homicides
where sparsity and low frequency is an issue. To implement this
we follow a Kernel Warping methodology (Zhou & Matteson,
2015). The methodology reduces the relevant space for homicide
prediction to regions of the city where homicides or street fights
have occurred, giving more weight to the homicide episodes. We
also introduce a temporal decay component to place a larger
importance to recent events. The proposed model outperforms
a standard KDE trained with homicide data, a KDE trained in
both homicide and street fights data for homicide prediction, and
a standard self-exciting point process on homicide data: flagging
just the 5% of the area of the city with the highest estimated
density, the Kernel Warping model correctly identifies between
30% and 35% of the homicides in the test set.1

I. INTRODUCTION

Predicting crime is extremely desired by police departments
to allocate law enforcement resources more efficiently. Given
that society tends to be more reluctant to more violent and
costly crimes, such as homicide, not all types of crime have
the same priority in agendas of policymakers. For instance,
[1] estimated that the average cost per murder exceeds $17.25
million in the United States and discussed how a prediction
tool could be used to assist homicide prevention. In Bogota, the
capital city of Colombia, the homicide rate has been trending
downwards with roughly 14 murders per 100.000 inhabitants
in 2019. However, this rate is considerably higher than the
international average, and it is still relevant to develop predictive
models that assist law enforcement agents in their work.

1Results of the project “Diseño y validación de modelos de analítica
predictiva de fenómenos de seguridad y convivencia para la toma de decisiones
en Bogotá” funded by Colciencias with resources from the Sistema General
de Regalías, BPIN 2016000100036. The opinions expressed are solely those
of the authors.

Previous models like [2], with a further extension to explicitly
predict homicides [3], successfully model crime through self-
exciting point processes and are considered the state-of-the-art
of crime prediction models. However, homicide occurrences in
Bogota present two main challenges for statistical analysis and
predictive modeling that make self-exciting point processes not
suitable for them: sparse spatial distribution and low frequency.
For instance, over the last five years, the average number of
homicides has been roughly a thousand events per year, in
contrast to the more than one hundred thousand robberies
reported in the same period. Nonetheless, more than 80% of
the homicides occur during street fights suggesting a strong
spatial and temporal correlation between these two types of
crime. The proposed methodology addresses these challenges
through a Manifold Learning approach that capitalizes on a
rich dataset of street fights to discover a criminal manifold that
we use to penalize a KDE model for homicide prediction.

The Manifold Learning approach assumes that the homicide
data lives on a low-dimensional subspace of the sample space,
to reduce the region of interest to a subset of Bogota were
homicides are likely to occur. The methodology can be seen
as a semi-supervised learning technique in which the labeled
and the unlabeled data (homicides and street fights) are used
to estimate the underlying lower-dimensional space where the
data lives, and the labeled data (homicides) is then used to
estimate the decision boundary over this subspace [4].

Specifically, we follow [5] to capitalize on a rich dataset
of street fights, highly correlated to homicides, to discover
a criminal manifold that is later used to penalize a KDE
model of homicides occurrences. The methodology deforms
the estimation made by the KDE to take into account the
regions where street fights occurred while highlighting the
homicide occurrences. In addition, we introduce a temporal
decay component to place higher importance on recent events.
The proposed model outperforms a standard KDE model trained
with homicide data, a KDE trained in both homicide and street
fights data for homicide prediction, and a standard self-exciting
point process on homicide data.

The article is organized as follows. Section II presents the
Kernel Warping methodology for homicide prediction, Section
III explains the data used to train and test the models, Section
IV states the main results, and Section V discusses the findings.



II. METHODOLOGY

We use the Kernel Warping methodology used in [5] to
predict ambulance demand in Melbourne, to predict homicides
in Bogota that are not only scattered but also rare. The Kernel
Warping methodology is used in this work to enrich the
homicide data using street fights, a criminal event highly
correlated to homicide occurrence.

In the first place, the Kernel Density Estimation (KDE)
model which places a non-negative kernel function at each
one of the points in a dataset D and adds them to produce an
estimation of its empirical distribution. Typically, the kernel
function is a Gaussian distribution with smoothing parameter
σ known as the bandwidth of the kernel. Then, for a point x in
the relevant domain, the model predicts the following intensity:

f(x) =
1

|D|
∑
i

kσ(x, xi). (1)

The Kernel Warping methodology assumes that the homicide
data lives in a manifold embedded in R2. Given than 80% of
the homicide events occur during street fights, we assume
that the aforementioned manifold is defined by the location of
the historical occurrences of street fights in the city. Thus, to
estimate the criminal manifold, we use a point cloud Z = {zi}i
of historic homicides and street fight events in the training set.
These events give an approximation of the manifold we want
to estimate to reduce the relevant area for homicide prediction
to the spatial region where homicides are likely to occur.

We use the adjacency graph defined on the point cloud
data as an empirical discrete approximation of the manifold.
Specifically, we define the adjacency graph matrix A with
entries aij = 1 if the event zi from the point cloud data Z
is amongst the n−nearest neighbors of zj , or vice versa, and
aij = 0 otherwise. Moreover, we define the set S as the historic
homicides in the train set. In a semi-supervised fashion, the set
S represents the label data we want to predict while the point
cloud Z includes both the labeled and the unlabeled data from
which we aim to learn the region where labeled data lives.

For instance, Figure 1 plots the adjacency graph constructed
for the events between March and August of 2019. Point cloud
data (homicides and streets fights) corresponds to the blue
points, while labeled data (homicides) are the red points.

Fig. 1. Adjacency graph of street fights (blue) and homicides (red).

We then construct the graph Laplacian matrix L = D −A
from the adjacency graph matrix A and the diagonal degree
matrix D, with its diagonal entries equal to the row sum of

A. The graph Laplacian matrix L gives an empirical discrete
approximation of the Laplace-Beltrami operator on the manifold
and penalizes differences between adjacent nodes [4], [5].

Finally, from a standard kernel function kσ(·, ·), we construct
a warped kernel k̃ following [5], [6] towards the point cloud
data:

k̃σ(x, s) = kσ(x, s)− kTxz(I + λKzz)
−1λLksz, (2)

where kxz = [kσ(x, z1), . . . , kσ(x, zZ)] and ksz =
[kσ(s, z1), . . . , kσ(s, zZ)] are vectors of kernels evaluated at x
and s, respectively, with respect to the point cloud data Z . The
matrix Kzz = [kσ(zi, zj)]i,j is a symmetric matrix of kernels
evaluated at all pairs of points of the cloud data, and I is a
Z × Z identity matrix. Finally, λ accounts for the degree of
deformation: if λ = 0 then k̃ = k, while λ → ∞ implies k̃
approaches a positive constant on the point cloud.

The warped kernel in equation (2) is computed for every x
in Bogota and each s ∈ S. Finally, the warped kernel (2) is
replaced in equation (1) to predict the expected crime intensity
for a given point x in the city:

f̃(x) =
1

|S|
∑
i

k̃σ(x, si). (3)

Extending [5], [6], we introduce a temporal decay component
to place a larger weight to more recent events. This time
decay seeks to account for the hotspots’ dynamics and the
displacement of crime. Specifically, we use an exponential
decay with parameter ω that controls the reduced weight
imposed on older events. We then multiply this spatial decay
to the kernel warped to the spatial region of interest defined by
the point cloud. Then, we obtain a Kernel Warping estimation
with temporal decay for a given point x in Bogota at a time
period after the end of the training set:

f̂(x) =
1

|S|
∑
i

exp(−ω(tx − tsi)) ∗ k̃σ(x, si). (4)

III. DATA

The data was provided by the Security Office of Bogota
and contains criminal records from 2010 to 2020, with
information about the type of the crime, georreferenced location
of occurrence, time stamp, among others. The model was
estimated using 6-fold cross validation with each training set
consisting of the crime events within a six months period. The
model was then evaluated using the homicides occurring in
the month following the training set. The first training set
consisted of the events between January and June of 2019 and
the first test set was the homicides reported in July of 2019.
The following training and respective test sets were defined as
the 4 weeks lag ahead from the previous training-test sets.

For each training set, the point cloud Z was defined as both
the homicide and the street fights and the labeled data S as the
homicide episodes only. On average, each point cloud consists
of 9,312 (std = 364.13) homicide and street fight records, each
labeled data set of 416 (std = 19.33) homicides, and each test
set of 68 (std = 9.98) homicide observations.



IV. RESULTS

The cross validation procedure was used to select the
parameters needed to train the model, as well as to asses
the variability of the predictive capacity of the methodology.
Specifically, the number of neighbors n used to construct
the adjacency graph (and therefore the Laplacian matrix), the
bandwidth of the kernels σ and the parameter of deformation
λ were selected to maximize the average predictive power of
the model on the test sets using grid search and the cross
validation procedure described above.2

To evaluate the predictive capacity of the models we use a
discrete grid of Bogota with ∼33,000 cells of 54 by 54 meters.
As validation metric we used the Hit Rate measure, which
captures the portion of homicides of the test set that occurred
in regions flagged by the model as hotspots:

Hit Rate =
# of homicides in hotspots

# of homicides
. (5)

In detail, for each fold and training set, we trained the
model and evaluate it using equation 3 at the coordinates
of the centroids of each one of the grid cells to construct
a homicide intensity over the city. The top x% of the grid
cells are flagged as hotspots and the Hit Rate of the model is
computed as the portion of homicides in the test set that occurs
in any of these hot cells. Furthermore, we vary the percentage
of the area of Bogota flagged by the model as hotspots and
produce Hit Rate (HR) vs. Percentage of Area Covered (PAC)
curves. The area under the HR-PAC curve gives a metric of
the global predictive performance of the model.

Fixing the number of neighbors n = 7 (which was the
number of neighbors that maximized the average area under
the HR-PAC curve3), Figure 2 presents the average area under
the HR-PAC curve for the cross validation trained models
for different values of σ (bandwidth kernel) and λ (warping
deformation parameter). Furthermore, we compute the HR-
PAC AUC for 20% of the grid cells flagged as hotspots. The
motivation behind this metric is the practical use of the model:
in a city as large as Bogota with limited resources, police
cannot cover large areas of the city permanently, which is why
a model with a more concave curve in the initial part might
be more valuable relative to one with a larger total area.

We found that increasing the deformation parameter λ
improved the model performance under all of the validation
metrics used. This validates our approach as it suggest that
the more the original KDE is deformed and enriched with
the manifold defined by the street fighting data the better the
model perform. Further, the bandwidth parameter σ = 0.001
consistently gives the better predictive power. These results
remain the same using the HR-PAC AUC for 5 or 10 percent
of the area.

Additionally, we fix the number of neighbors n = 7, the
kernel bandwidth σ = 0.001 and the deformation parameter
λ = 10, and fine tuned the temporal decay parameter ω. The

2We used binary weights and nearest neighbors to construct the adjacency
graph matrix in all the experiments.

3Results not shown.
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Fig. 2. Average area under the Hit Rate - Percentage of Area Covered as
hotspots curve for homicide prediction. 6-fold cross validation varying σ and
λ parameters.

cross validation procedure is analogous to the one used for
the rest of parameters using equation (4) to train and test the
model. The temporal distance of two events was measured
as the number of months between them. We tested a range
of ω values from 0 to 0.2 and found that a temporal decay
ω = 0.1 slightly improves (around 0.01) the predictive capacity
of the kernel warping approach relative to a case of ω = 0
(equivalent to having no temporal decay), suggesting some
temporal dynamics that should be included into the model.

Lastly, we compare the predictive accuracy of the kernel
warping approach with and without the temporal decay com-
ponent, and against standard KDE models using the homicide
events (labeled data) and using both homicide and street fights
data (point cloud).4 Figure 4 plots the predicted intensity
maps for Bogota for the training set of crime events between
March and August of 2019. The actual homicides reported
during September in Bogota (60) are presented as white
points. Furthermore, we compare our approach against a state-
of-the-art self-exciting point process on homicide data [2].
Figure 3 presents the Average HR - PAC curves for the 6-
fold cross validation for the different train models: KDE with
homicide data, KDE with both homicide and street fights data,
Kernel Warping, Kernel Warping with temporal decay, and
Self-Exciting Point Process with homicide data.

The kernel warping proposed model outperforms the com-
peting models for homicide prediction. This is particularly
relevant for the first portion of the HR-PAC curve as it is likely
the actual covering capacity of Bogota police department. For
instance, flagging the 5% of the area of the city with the
highest estimated density, the kernel warping model correctly
identifies between 30% and 35% of the homicides in the test
set. Furthermore, including a temporal decay slightly improves
the predictive capacity of the model.

V. DISCUSSION

We implement a manifold learning approach that capitalizes
on a rich dataset of street fights to discover a criminal manifold
that we use to penalize a KDE model of homicides where
sparsity and low frequency are challenging issues. We follow
a Kernel Warping methodology that reduces the relevant space

4For these KDEs we used the same optimal bandwidth σ = 0.001.
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for homicide prediction.

(a) KDE homicides data.
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Fig. 4. Predicted intensity maps by different models. Actual homicides reported
in September of 2019 in white.

for homicide prediction to regions of the city where homicides
or street fights have occurred, giving more weight to the
homicide episodes. The proposed model outperforms a standard
KDE trained with homicide data, a KDE trained in both
homicide and street fights data and a standard self-exciting
point process on homicide data. We further introduce a temporal
decay component to place a larger importance to recent events
slightly improving the predictive capacity of the methodology.
It should be noted that a standard KDE model that uses both
homicide and street fighting events for homicide prediction
outperforms a KDE trained with just homicide events. This
shows the relevance of enriching the training set with other

highly correlated events in order to overcome the challenging
sparsity and low frequent nature of homicide events.

The proposed model seeks to assist policymakers and law
enforcement agencies in the allocation of scarce resources
intended to prevent homicide events. Since homicide is one of
the most violent and costly crimes, developing robust predictive
models will likely impact in a positive way society as a whole.
In particular and to a greater extent, it will benefit those that
are more vulnerable to suffer directly from this fatal type of
crime. However, crime prediction models suffer from several
sources of bias. For instance, they operate in partial feedback
or bandit settings where the decisions made by the algorithms
affect the data collected which is used to retrain the models
[7]. Moreover, the data used to train these models frequently
present a selection bias product of historic patrolling patterns
of law enforcement agents [8]. When these two issues are
present together, predictive patrolling models can reproduce
and accentuate biases against some populations leading to over
and/or under patrolling these communities. This is called in
the literature as runaway feedback loops [9].

Homicide data in Bogota is checked weekly between
different public entities to generate high-quality homicide
data with low reporting or selection biases. However, our
methodology capitalizes on enriching this high-quality dataset
with other types of crime that likely suffer from these biases.
Further research must be done to quantify and address these
potential biases of the proposed model for homicide prediction.
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